Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The National Ecological Observatory Network (NEON) provides over 180 distinct data products from 81 sites (47 terrestrial and 34 freshwater aquatic sites) within the United States and Puerto Rico. These data products include both field and remote sensing data collected using standardized protocols and sampling schema, with centralized quality assurance and quality control (QA/QC) provided by NEON staff. Such breadth of data creates opportunities for the research community to extend basic and applied research while also extending the impact and reach of NEON data through the creation of derived data products—higher level data products derived by the user community from NEON data. Derived data products are curated, documented, reproducibly‐generated datasets created by applying various processing steps to one or more lower level data products—including interpolation, extrapolation, integration, statistical analysis, modeling, or transformations. Derived data products directly benefit the research community and increase the impact of NEON data by broadening the size and diversity of the user base, decreasing the time and effort needed for working with NEON data, providing primary research foci through the development via the derivation process, and helping users address multidisciplinary questions. Creating derived data products also promotes personal career advancement to those involved through publications, citations, and future grant proposals. However, the creation of derived data products is a nontrivial task. Here we provide an overview of the process of creating derived data products while outlining the advantages, challenges, and major considerations.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract The National Ecological Observatory Network (NEON) is a multidecadal and continental-scale observatory with sites across the United States. Having entered its operational phase in 2018, NEON data products, software, and services become available to facilitate research on the impacts of climate change, land-use change, and invasive species. An essential component of NEON are its 47 tower sites, where eddy-covariance (EC) sensors are operated to determine the surface–atmosphere exchange of momentum, heat, water, and CO 2 . EC tower networks such as AmeriFlux, the Integrated Carbon Observation System (ICOS), and NEON are vital for providing the distributed observations to address interactions at the soil–vegetation–atmosphere interface. NEON represents the largest single-provider EC network globally, with standardized observations and data processing explicitly designed for intersite comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, EC is tightly integrated with soil, meteorology, atmospheric chemistry, isotope, phenology, and rich contextual observations such as airborne remote sensing and in situ sampling bouts. Here, we present an overview of NEON’s observational design, field operation, and data processing that yield community resources for the study of surface–atmosphere interactions. Near-real-time data products become available from the NEON Data Portal, and EC and meteorological data are ingested into AmeriFlux and FLUXNET globally harmonized data releases. Open-source software for reproducible, extensible, and portable data analysis includes the eddy4R family of R packages underlying the EC data product generation. These resources strive to integrate with existing infrastructures and networks, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities.more » « less
-
Abstract The COVID‐19 pandemic significantly impacted undergraduate education and fundamentally altered the structure of course delivery in higher education. In field‐based biology and ecology courses, where instructors and students typically work collaboratively and in‐person to collect data, this has been particularly challenging. In this context, faculty from the Ecological Research as Education Network (EREN) collaborated with the National Ecological Observatory Network (NEON) to design five free‐flexible learning projects for use by instructors in varied modalities (e.g., socially distanced in‐person, remote, or HyFlex). The five flexible learning projects incorporated the Ecological Society of America’s 4DEE framework and included field data collection, data analysis components, and an activity that incorporates existing NEON field protocols or datasets. Each project was designed to provide faculty members with a high degree of flexibility so that they could tailor the implementation of the projects to fit course‐specific needs. Collectively, these learning projects were designed to be flexible, inclusive, and facilitate hands‐on research while working in alternative classroom settings.more » « less
An official website of the United States government
